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For a nonlinear hyperbolic system, computational methods yield different weak 
solutions for different forms of the system. An explanation is given of the numerical 
mechanism by which a scheme selects a particular weak solution and why this mechan- 
ism depends not only on the scheme but also on the form of the equations. For the 
Lax-Friedrichs and Lax-Wendroff schemes, it is shown how a correction term can be 
added to a transformed system so as to preserve the weak solution. This analysis is 
illustrated by numerical shock-like solutions of the equations of shallow fluid flow over 
a ridge. 

INTRODUCTION 

Frequently, for  a nonlinear hyperbolic initial value problem, no solution exists 
which is smooth  for  all positive time, even if the initial data are smooth;  however, 
there exist more  than one weak solution, and some solutions may be discontinuous. 
For  such problems, in conservation form, it is conjectured that  by requiring that  
specific j ump  relations (the Rank ine -Hugon io t  conditions) and an entropy-like 
condition, be satisfied at discontinuities, there exists a unique weak solution. This 
has been proved for  a single equat ion by Quinn [3] using a generalized entropy 
condit ion and the definitions o f  these special weak solutions, known as shock 
solutions, given by Lax [2]. 

Unfortunately,  unlike the classical situation, this uniqueness depends on the 
fo rm of  the given system of  partial differential equations. I n  other words, a 
nonlinear t ransformat ion of  the original dependent  variables leads to a different 
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shock solution. In the other shock solution the speed of propagation of the 
discontinuities for example may differ from the original shock speed. Of course, 
in cases with smooth solutions, such transformations are permissible and all the 
classical results hold. 

Extra care must, therefore, be taken when a system of equations of this type is 
formulated, especially when numerical computations are to be performed. A 
computer program including a nonlinear system solver that gave satisfactory 
smooth results for some physical problems, and even good agreement with obser- 
vations, might fail when discontinuities arise. This phenomenon has been 
demonstrated by Lax [2] for a single equation, and lately by Kasahara and 
Houghton [I] for a system describing shallow flows over a ridge. In [1] it is also 
shown that when computing with schemes which can handle shocks, the numerical 
procedure is "loyal" to the form of the equations used, and gives in every case the 
corresponding, but different, weak solutionS. 

Two questions immediately arise: (a) which is the preferable form of the 
equations ? (b) knowing the preferable form, is it possible to make a change in 
the numerical scheme so that a nonlinear transformation would leave the weak 
solution unchanged? 

Our work here will deal with the second question, but we shall first remark that 
the first question cannot be answered within mathematics since it is not a strictly 
mathematical problem. The question is a physical one and can be answered only by 
a careful examination of the way in which the equations were obtained from the 
physical model. These points will be dealt with in our example which is the one 
presented by Kasahara and Houghton [1]. 

We begin by writing the partial differential equations governing the motion of 
an incompressible, homogeneous inviscid, hydrostatic fluid. The equations we 
write down are those derived directly from the integral conservation laws of mass 
and momentum. This important point was emphasized by Rubin and Preiser [5] 
who even suggested that numerical schemes should be constructed from the integral 
form of the physical laws*. Our equations, written in what will be referred to as the 
"momentum form" [1], are 

Wt --~- F~-~- K~- O, 
where 

W-~ (~), F-~ (m'/q~ -}-m gq~'/2) and 

O) 

Here, ~ is the height of the fluid above the lower boundary surface and rn is the 
momentum per unit volume, m = u �9 4, where u is the horizontal fluid velocity. 

* Preiser and Rubin, private communication. 
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g is the gravitational acceleration and H----- H(x) is the function describing the 
lower boundary. We shall assume that 

H(x) = t h(x)' I x l  <~ a (2) 
to, I x l  >~a '  

namely that we have a finite isoltated ridge of width 2a and elsewhere the lower 
surface is horizontal. We shall also choose h(x) such that H, H~ and H ~  will be 
everywhere continuous. 

I f  in (1) we multiply the second equation by u, subtract it f rom the first, divide 
by ~ and take the result together with the second equation of  (1), then we have our 
system in "velocity form,"  namely 

~% + ~ + g: = 0, (3) 

where 

{u 12 -I- g+) a n d  = 

Note  that (3), which we obtained after our nonlinear transformation, is also in 
conservation form. The system (3) has often been used in various applications and 
produces nature-like results in smooth cases but nonphysical shocks when discon- 
tinuities arise. 

This brings brings us to the second question: I f  we intend to use appropriate 
schemes like the Lax-Wendroff  (LW) second order scheme, or the first order 
Lax-Friedrichs (LF) method [2], can something be done so that (3) can still be 
used ? What  is the numerical mechanism that chooses the correct physical discon- 
tinuities, how is this mechanism damaged by our nonlinear transformation, and 
how can it be corrected ? 

THE HIDDEN DISSIPATIVE TERM 

We start our analysis with the first order Lax-Friedrichs (LF) scheme, known 
sometimes also as the Lax staggered method. Let us first discretize our equations 
and denote as usualJ~ ~ = f (xs ,  t~) and A = At/Ax. The ridge function h(x) in (2) 
will be taken as he o (1 - -  x2/a~), where usually we chose a = 1 and he = 0.5 and 
at x = q-a we interpolated to insure the continuity of  H, H~,  and H ~ .  

The initial conditions at t = 0 are ~(x, 0) = ~0 - -  H(x) and u(x, O) = Fo(g~o) 1/~, 
where usually we chose ~0 = 1, and F 0 = 0.7, a case known to include shocks 
(see [1] and references therein). 
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Let us also write down the following facts 

Fx = AWo~ where A = (2m/qa g~  ---m'/(~' 1 
\ 1  U / 

and similarly 

(4) 

The eigenvalues, in both cases, are [u ~ (g~) l /q ,  and we denote [] u l q- (g~)1/2] 
by m The known linear stability condition for the LF scheme, as well as for the 
LW scheme, is A~ ~< 1, and our time steps will be chosen accordingly. We also 
note, for later purposes that 

Wt, = [A(F~ q- K)]~ --  R7 

and similarly 

where /s = K, = (--grimm.), (6) 

l~u = [A(/~ q- R)]~, since /~ = 0. (7) 

Now, the LF scheme for the system (1) (and similarly for (3)) is given by 

W~ +1 = (m;~+l + W;~n-1)/2 -- (,~/2) " (F;!+I --  Fjn-1) -- A t  �9 K~". (8) 

This scheme is of first order accuracy which means (see [4]) that substituting 
the solution W(x, t) of the differential system into (8) yields 

W(xj , t.+O --  [W(x~+l, tn) + W(Xj_l , t.)]/2 

+ (,~/2) �9 [F(~+I, tn) - -  F(x~_l, t.)] + At  �9 K(x~, t . )  

= O((At)~), where r = 2. (9) 

We now claim that what (8) is approximating even more closely than (1), is the 
system 

W, q- F~ + K =  Q . W, (10) 

where Q is a differential operator to be specified shortly, such that in smooth 
regions Q �9 W = O(At). Using (10) we have 

W ( & ,  t.+l) = W(x j ,  t . )  + A t ( - - F .  - -  K § QW)~. 

+ [(At)2/2] �9 {[a(r~ + K)]. -- K}~. + O((At)a). (11) 

We now take W in (9) to be the solution of (10) and choose Q such that in (9), r 

= w h e r e  = 
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is at least three. By substituting (11) and other necessary Taylor expansions into (9), 
it is immediately found that r is indeed three if 

a �9 W = ( A t / 2 ) { ( W ~ / 2 t  2) - -  [A(F~  + K)]~ -}- K} (12) 

L 
and a similar expression is obtained for the system (3), except that there K ---- 0. 

The linear version (A and K taken as constants) of this hidden term Q is 
( A  t / 2 )  �9 ( A - s I -  A S) W~ and it is precisely our numerical stability requirement 
which makes the matrix (~-~I - -A s) positive definite, and, therefore, (12) is 
essentially a parabolic dissipative term. The hidden dissipative term Q �9 w depends 
on the specific scheme used. 

A similar analysis, but much more cumbersome, can be carried out for the 
Lax-Wendroff scheme. There it turns out that one must search for a term Q �9 W 
in (10) such that the left-hand side of the equation analogous to (9) should be 
O ( ( A t ) 5 ) .  This is needed in order to reveal the dissipative feature of the Q �9 w term 
which plays an important role in computations involving discontinuities. The 
linear version of the hidden LW dissipative term (see [4, pp. 331-332]) is 

O L w "  W = - - [ ( d t ) 2 / 2 4 ] ( A - ~ I -  A2)(4A �9 W ~  -k  3 A t  �9 A s �9 W ~ ) .  (13) 

Note the negative sign which makes the fourth derivative term a proper dissipative 
one. Returning to the LF scheme; since we are acutally solving (10), we claim that 
the dissipative term must be included in any transformation of the system, if the 
same weak solution is to be obtained numerically. 

A CORRECTION TO THE VELOCITY FORM SYSTEM 

We continue by taking the system (1) and substituting it in (11). After replacing 
m by u �9 4~ we get 

Q W  ~ ( A t / 2 )  . (qal ,  (14) 
\(,/21 

where 

and 

q l  = ( u ~  q- 2 u ~  q-  ~ u ~ ) / A  2 - -  (3u 2 q- g~) ~bu~ -- (u 2 q- 3g~) u ~  

- -  6uc~u~ ~ - -  6uZu~efi~ - -  5 g 4 ~ u ~  ~ - -  3guq~  2 - -  2 g C u n ~  

- -  3gc~u~H~ - -  3 g u 4 : H ~  (15) 

q2 = ~xd  2t2 - -  2u~u~= - -  (u 2 -[- g~)  ~== - -  216u. = --  g~2 

(16) 

58111212-3 
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The same procedure applied to system (3) leads to 

where 

and 

ql = u J  A2 - -  ( u2 + gq~) Ux~ - -  2 g u r  - -  2uu~  ~ 

- -  3 g u x r  - -  g u x H ~  - -  g u H ~ ,  

( 1 7 )  

s - -  ( A t / C )  �9 [u~r - ( u r  �9 (u~/2 + gr + gS)~]. (18) 

We, therefore, claim that the difference in the numerical solutions obtained from 
the two sets of equations is caused by the failure to correctly take into account the 
effect of  the transformation on the hidden dissipative term. We further claim that 
solution of  system (3) with the correction term (18) included, will give the same 
physical shocks that are obtained when system (1) is solved. 

This was confirmed by actually computing numerical solutions, a few graphs 
of  which are shown in Fig. 1 to illustrate this phenomenon. 

After 750 time steps the main shock, which is travelling to the right, is at x8 = 3.2 
when the equations in momentum form were used (Fig. lb). At this time for the 
system in volocity form without any correction term, the shock is at xs ~ 5.2 
(Fig. lc). Addition of the correction term (18), again puts the shock at x8 = 3.2 for 
the same time, as seen in Fig, la. This clearly illustrates the effect of  different 
dissipative terms on the computation of weak solutions, even when these terms 
are hidden. In smooth cases, the correction is of  the order A t  �9 s = O ( ( A t )  2) and, 
thus, is negligible for a first order scheme. 

In fact, comparison of  Figs. la and lb shows the solutions obtained from the 
momentum form system and the velocity form system with the correction term (18), 
to be identical. By contrast, comparison of  Figs. lb and ]c shows that the solutions 
obtained from the momentum and velocity form equations are different e v e r y w h e r e  

to the right of the point at which the momentum form shock first appears. At 
t = 18.75 and x = 6.0, for example, we have in Figs. la and lb, r = 0.924 but 
in Fig. lc, r = 0.986. 

Next, we take the system (1) with (13) on the right-hand side and apply the 
transformation to it, that is, we multiply the second equation by u, subtsact from 
the first, and divide by r A comparison of  the result with (3) including (17) on the 
right-hand side, reveals that the second equations exactly match, but the first 
corresponding equations differ by 
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FIG. 1. The fluid's height after 750 At's  (t = 18.75) for F0 = 0.7, H = (1 --  X2)/2, and 
A X  = 0.05. 

F ina l ly ,  we p r e sen t  a n  e x a m p l e  o f  o u r  ana lys i s  a p p l i e d  to  a s imple  s ingle  equa t ion .  
I f  one  solves  the  e q u a t i o n  

u, -F (u2/2)~ = 0 (19) 

b y  the  L F  scheme,  he  solves  wi th  even h i g h e r  a c c u r a c y  the  e q u a t i o n  

u, + (u2/2)~ ----- (A t~2)  �9 [ u ~ / A  2 - -  (u2u~)~]. (20) 

N o w ,  u n d e r  the  t r a n s f o r m a t i o n  v = u 2, (19) b e c o m e s  

v, + ((2/3) �9 vS/2)~ = 0, (21) 
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and the LF scheme solve with greater accuracy 

vt + ((2/3) �9 vZ/Z)~ = ( A t / 2 )  �9 [ v ~ / A  2 - -  (vvx)x]. (22) 

However, under this transformation, (20) becomes 

v, + ((2/3) �9 va/Z)~ : ( d t / 2 ) [ v ~ / h  2 - -  (vv~)x + (vx~/2) �9 (1 - -  1/(A~v))]. (23) 

The term (At/4) vx~(1 -- 1/(,A~v)) is, therefore, the correction term which should be 
taken into account if one wants to compute a weak solution of  (21) which is equal 
to the weak solution of  (19). Note that since these equations are not motivated 
by a physical problem it is not clear if (19) or (21) is the natural form and, therefore, 
which should be augmented with a correction term. 
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